女人一丝丝不挂,公与淑婷厨房猛烈进出,我的小后妈韩剧在线看免费高清版,精品无码一区二区三区

Nanotechnology potential and progress addressed in recent Shell forum

[加入收藏][字號: ] [時間:2008-12-31  來源:JPT  關注度:0]
摘要: Nanotechnology potential and progress addressed in recent Shell forum While nanotechnology has made a positive impa...
Nanotechnology potential and progress addressed in recent Shell forum

While nanotechnology has made a positive impact on many industries, the oil and gas industry has yet to fully investigate its potential. For this reason, Royal Dutch Shell hosted an  International Nanotechnology Forum  last week in Houston, Texas. The three-day, invitation-only event began a serious dialogue between nanotechnology experts and Shell scientists with the goal of understanding the realistic benefits nanomaterials might provide in future production scenarios.

Nanotechnology refers to the understanding and control of materials at the molecular level, in the size range of roughly 1 to 100 nm. To put this in perspective, the size ratio of a football to the diameter of the earth is roughly the same as that between 1 nm and 1 meter.

At these dimensions, materials exhibit unique physical phenomena that ideally give way to novel applications. For example, nanomaterials can be much stronger than conventional materials, and may offer superior flexibility and corrosion resistance as well. These properties would be well suited for construction materials that are stronger, and yet lighter, than steel for offshore production operations.

“Nanotechnology has made significant progress, and offered several benefits, to other industries in the past few years, but the oil and gas industry is only starting to look at this class of materials seriously,” said Sergio Kapusta, Shell’s Chief Scientist for Materials and one of the forum attendees. He mentioned that while industries such as electronics, pharmaceuticals, and telecommunications have invested billions of dollars in nanotechnology over the past few years, the oil and gas industry as a whole has only invested approximately USD 100 million in nanotechnology R&D over the same time frame.

Shell began seriously investigating nanotechnology for energy applications about three years ago, with the goals of producing more hydrocarbon from existing wells, producing more hydrocarbon from difficult sources (i.e., oil sands, shales), and helping to protect the environment through improvements to water clarification and carbon sequestration.

Shell has made inroads into research collaboration by pioneering the Texas-based Advanced Energy Consortium, which facilitates precompetitive research in micro- and nanotechnology materials, and by sponsoring SPE's first Applied Technology Workshop on nanotechnology, held earlier this year in Dubai. However, in order for Shell to obtain step change improvements rather than incremental advances, more detailed collaborative work is needed.

The forum brought together 30 of the world’s leading nanotechnology experts and 30 Shell scientists to open the lines of communication and set the framework for future collaboration. “The first part of the forum was designed to get everyone on the same page,” said Kapusta, “essentially to educate the nanotechnology community about the oil field and the challenges we face, and then for us to learn more about the unique characteristics of nanomaterials and how they have been applied elsewhere. With this framework, we could then begin the detailed dialogue.”

A few presentations were given on specific oilfield topics, and then breakout groups were set up on each topic. People with interest in a given topic were encouraged to join that group, discuss specifics of the production challenges in that topic, and think about how collaborative efforts might solve these challenges.

“These breakout groups returned with very specific areas for research,” Kapusta said. Some of the areas included:

Newer materials. More advanced nano-based materials would ideally be of higher strength and durability, lower weight, lower cost, and have shorter delivery times. There is also a need for new coatings with greater corrosion and erosion resistance.
Improved separations. Specific research interests include developing nano-based materials for improved fluid separation and lower-cost means of separating CO2 at high pressure for more efficient carbon sequestration.
Improved catalysts. In particular, there is interest for nano-based catalysts that can convert shales and tar sands into higher quality fuels.
Improved EOR operations. Nanotechnology could provide improved emulsions for more efficient reservoir sweeps, or nanoparticles that could be injected into the reservoir and transmit data to the surface for improved mapping and identification of the oil/water interface.
Greener fuels. A combination of nano- and bio-based solutions could yield more efficient catalysts for the conversion of cellulose into ethanol. 

Another major research focus has to be on the fate of these nanomaterials in the environments to which they are introduced, and on the potential health consequences, since there are currently no clear regulations on the use of nanomaterials. “Wine and water are both liquids, but they are not the same. Nor is one nanoparticle the same as another, of course ? ‘nano’ refers only to their size. But this technology is still so new that there is uncertainty as to the potential environmental, health, and safety risks that some
nanoparticles may pose,” Kapusta said.


          您的分享是我們前進最大的動力,謝謝!
關于我們 | 會員服務 | 電子樣本 | 郵件營銷 | 網站地圖 | 誠聘英才 | 意見反饋
Copyright @ 2012 CIPPE.NET Inc All Rights Reserved 全球石油化工網 版權所有
京ICP證120803號 京ICP備05086866號-8 京公網安備110105018350
主站蜘蛛池模板: 雷波县| 白朗县| 庆安县| 杭锦旗| 阳新县| 甘谷县| 扶余县| 榆树市| 绍兴县| 奉新县| 寿光市| 黄冈市| 兴山县| 会同县| 汝阳县| 永安市| 松原市| 堆龙德庆县| 武川县| 沧州市| 青龙| 绥德县| 宁明县| 潜江市| 涟水县| 甘孜| 紫阳县| 桂阳县| 昆山市| 湾仔区| 湛江市| 贞丰县| 平阴县| 辛集市| 东莞市| 梅河口市| 观塘区| 光泽县| 宜川县| 章丘市| 古丈县|