石油勘探常識名詞解釋(推薦)
[加入收藏][字號:大 中 小]
[時間:2009-08-26 振威石油網 關注度:0]
摘要:石油勘探
所謂石油勘探,就是為了尋找和查明油氣資源,而利用各種勘探手段了解地下的地質狀況,認識生油、儲油、油氣運移、聚集、保存等條件,綜合評價含油氣遠景,確定油氣聚集的有利地區,找到儲油氣的圈閉,并探明油氣田面積,搞清油氣層情況...
石油勘探
所謂石油勘探,就是為了尋找和查明油氣資源,而利用各種勘探手段了解地下的地質狀況,認識生油、儲油、油氣運移、聚集、保存等條件,綜合評價含油氣遠景,確定油氣聚集的有利地區,找到儲油氣的圈閉,并探明油氣田面積,搞清油氣層情況和產出能力的過程。
地震勘探
地震勘探是地球物理勘探中一種最重要的的方法。它的原理是由人工制造強烈的震動(一般是在地下不深處的爆炸)所引起的彈性波在巖石中傳播時,當遇著巖層的分界面,便產生反射波或折射波,在它返回地面時用高度靈敏的儀器記錄下來,根據波的傳播路線和時間,確定發生反射波或折射波的巖層界面的埋藏深度和形狀,認識地下地質構造,以尋找油氣圈閉。
多次覆蓋
多次覆蓋是指采用一定的觀測系統獲得對地下每個反射點多次重復觀測的采集地震波訊號的方法。它可以消除一些局部的干擾,有利于求得較準確的訊號。
地震剖面
地震勘探方法是在地面上布置一條條的測線,沿各條測線進行地震施工采集地震信息,然后經過電子計算機處理就得出一張張地震剖面圖。經過地質解釋的地震剖面圖就象從地面向下切了一刀,在二維空間(長度和深度方向)上顯示了地下的地質構造情況。
地震勘探的數據處理
把記錄采集到地震信息的磁帶上的大量數據輸入到專用的電子計算機中,按照不同的要求用一系列功能不同的程序進行處理運算,把數據進行歸類編排,突出有效的,除去無效和錯誤的,最后把經過各種處理的數據以波形、線形的形式繪制在膠片上或靜電紙上,形成一張張地震剖面。這個過程就稱做數據處理。
地震勘探中所說的速度
地震勘探所說的速度即是地震波的傳播速度。常用的是平均速度,它是地震波垂直穿過某一巖層界面以上各地層的總厚度與各層傳播時間總和之比,可以用來把地震記錄的時間轉換為深度(距離)。此外,還有層速度、均方根速度、疊加速度等。
水平疊加剖面
在用多次覆蓋方法采集的地震資料處理過程中,把共同反射點的許多道的記錄經動校正以后疊加起來,以提高訊噪比(高訊號與噪聲的比例),壓制干擾,用這種方法處理所得到的地震剖面叫水平疊加剖面。
疊加偏移剖面
在地震資料處理中,在水平疊加的基礎上,實現反射層的空間自動歸位,用這種方法處理得到的地震剖面,就是疊加偏移剖面。
垂直地震剖面
地震源放置于地面,接收的檢波器置于深井中,地面激發震動后由不同深度的檢波器接收地震波訊號,這種方法獲得的地震波訊號是單程的,而不是反射或折射回來的,對分析和認識地下地質構造情況更為準確。
地震資料解釋
地震資料解釋是把經過處理的地震信息變成地質成果的過程,包括運用波動理論和地質知識,綜合地質、鉆井、測井等各項資料,做出構造解釋、地層解釋,巖性和烴類檢測解釋及綜合解釋,繪出有關的成果圖件,對測區作出含油氣評價,提出鉆井位置等。
地震地層學
地震地層學是把地層學和沉積學特別是巖性、巖相的研究成果,運用到地震解釋工作中,把地震資料中蘊藏的地層和沉積特征的信息充分利用起來,做出系統解釋的方法。
地震層序
地震層序是沉積層序在地震剖面圖上的反映。在地震剖面圖上找出兩個相鄰的反映地層不整合接觸的界面,則兩個界面之間的地層叫做一個地震層序。但因為受不整合面影響,其間的地層即地震層序是不完整的,沿不整合面追蹤到地層變成整合的之后,這個地震層序才是完整的。
層序地層學
層序地層學是在地震地層學基礎上進一步發展的新學科,是綜合地質、地震資料,詳細劃分并確立地下地層的層序,從而研究其構造活動、沉積環境的變化、巖相分布等。
地震相
地震相是指沉積物(巖層)在地震剖面圖上所反映的主要特征的總和。地震相標志分為:內部反射結構;反射連續性;反射振幅;反射頻率;外部幾何形態及其伴生關系。
合成地震記錄
合成地震記錄是用聲波測井或垂直地震剖面資料經過人工合成轉換成的地震記錄(地震道)。它是地震模型技術中應用非常廣泛的一種,也是層位標定、油藏描述等工作的基礎,是把地質模型轉化為地震信息的中間媒介。
油氣檢測技術
油氣檢測技術是一種綜合利用烴類存在的多種地震特性參數(速度、頻率、振幅、相位等)來確定油氣富集帶的方法。這類技術有許多種,目前常用的有亮點技術和AVO技術等。
儲集層預測技術
儲集層預測技術是綜合應用地震、地質、鉆井、測井等各項資料對地下儲集層的分布、厚度及巖性和物理性質變化進行追蹤和預測的一項先進技術。
地震橫波勘探
地震波(彈性波)的傳播有縱波與橫波兩種,縱波質點位移的方向與波的傳播方向平行,橫波的質點位移方向與波的傳播方向垂直。現在通用的地震勘探方法采集的是縱波的訊號,采集橫波訊號的稱做地震橫波勘探。橫波在判斷巖性、裂縫和含油氣性方面有其固有的優點。此種勘探方法在我國正處于研究和實驗階段。
重力勘探
各種巖石和礦物的密度(質量)是不同,根據萬有引力定律,其引力也不相同。椐此研究出重力測量儀器,測量地面上各個部位的地球引力(即重力),排除區域性引力(重力場)的影響,就可得出局部的重力差值,發現異常區,這一方法稱做重力勘探。它就是利用巖石和礦物的密度與重力場值之間的內在聯系來研究地下的地質構造。
磁力勘探
各種巖石和礦物的磁性是不同的,測定地面上各部位的磁力強弱以研究地下巖石礦物的分布和地質構造,稱做磁力勘探。由于地球本身就是個大磁體,所以對磁力的預測值應進行校正,求出只與巖石礦物磁性有關的磁力異常。一般鐵磁性礦物含量愈高,磁性愈強。在油氣田區,由于烴類向地面滲漏而形成還原環境,可把巖石或土壤中的氧化鐵還原成磁鐵礦,用高精度的磁力儀可以測出這種磁異常,從而與其它勘探手段配合,發現油氣田。
電法勘探
電法勘探的實質是利用巖石和礦物(包括其中的流體)的電阻率不同,在地面測量地下不同深度地層介質電性差異,用以研究各層地質構造的方法,對高電阻率巖層如石灰巖等效果明顯。電法勘探種類較多,我國目前石油電法勘探一般用直流電測深、大地電磁測深、可控源聲頻大地電磁測深等方法,近期又發展了差分標定電法、大地電場巖性探測法等新方法。
地球化學勘探
根據大多數油氣藏的上方都存在著烴類擴散的“蝕變暈”的特點,用化學的方法尋找這類異常區,從而發現油氣田,就是油氣地球化學勘探。油氣地球化學勘探方法的種類比較多,常用的是土壤烴氣體測量、土壤硫酸鹽法、穩定碳同位素法、汞和碘測量法等,還有地下水化學法及井下地球化學勘探法。
地球物理測井
地球物理測井簡稱測井,是在鉆孔中使用測量電、聲、熱、放射性等物理性質的儀器,以辨別地下巖石和流體性質的方法,是勘探和開發油氣田的重要手段。
測井系列
不同的測井儀器有不同的性能和作用,在某種地質條件和鉆孔條件下,根據一定的地質或工程目的,采用多種有針對性的測井儀器組合起來進行測井,稱為達到這種目的的測井系列。
電阻率測井
是在鉆孔中采用布置在不同部位的供電電極和測量電極來測定巖石(包括其中的流體)電阻率的方法。通常所用的三電阻率測井系列是:深側向、淺側向和微側向電阻率測井。
聲速測井
聲速測井是利用不同的巖石和流體對聲波傳播速度不同的特性進行的一種測井方法。通過在井中放置發射探頭和接收探頭,記錄聲波從發射探頭經地層傳播到接收探頭的時間差值,所以聲速測井也叫時差測井。用時差測井曲線可以求出儲集層的孔隙度,相應地辨別巖性,特別是易于識別含氣的儲集層。
放射性測井
放射性測井即是在鉆孔中測量放射性的方法,一般有兩大類:中子測井與自然伽馬測井。中子測井是用中子源向地層中發射連續的快中子流,這些中子與地層中的原子核碰撞而損失一部分能量,用深測器(計數器)測定這些能量用以計算地層的孔隙度并辨別其中流體性質。自然伽馬測井是測量地層和流體中不穩定元素的自然放射性發出的伽馬射線,用以判斷巖石性質,特別是泥質和粘土巖。
井溫測井
井溫測井又稱熱測井,它可以進行地溫梯度的測量;可以在產液井中尋找產液的井段,在注入井中尋找注入的井段;對熱力采油井,可以通過鄰井的井溫測量檢查注蒸汽的效果;可以評價壓裂酸化施工的效果等。
地層傾角測井
地層傾角測井是在鉆孔中測量地層傾斜方向和傾斜角度的方法。根據測得的數據,可以研究地質構造與沉積環境,從而追蹤地下油氣的分布情況。
井徑測井
井徑測井儀是用來測量鉆孔直徑的。在未下套管的井中可以測量井徑不規則程度,提供下套管固井施工所需要的水泥用量參數;還可根據鉆孔的不規則形態,分析判斷地下巖層裂縫的發育程度和裂縫的方向。在套管受損壞的井中,可以測量套管損壞的位置和變形情況。
自然伽馬射能譜測井
自然伽馬能譜測井是測量地層中放射性元素鈾、釷和鉀40的伽馬射線強度譜,從而確定它們在地層中的含量,用于分析巖石及流體性質。
聲波變密度測井
補償聲波測量的是接收到的聲波波列的首波達到時間,用于測定地層的聲波傳播速度,源距較短,其資料用來計算地層孔隙度和確定氣層。全波列聲波測井記錄的是接收到的聲波全部波列,可測定巖層的彈性模量,其源距較長,用于求解巖層強度、檢查壓裂效果及固井質量等,在求解地層孔隙度及判斷氣層方面比補償聲波更為準確。
三孔隙度測井
指補償中子、補償密度及補償聲波測井。
測井解釋的“四性”
“四性”是指地層的巖性、儲集性(孔隙度、滲透率)、含油性和物理性。
測井相
測井相又名電相,是從測井資料中提取與巖相有關的地質信息,并將測井曲線劃分若干個不同特點的小單元,經與巖心資料詳細對比,明確各單元所反映的巖相,即是測井相。在一個地區建立了測井相后,可以利用測井曲線解釋出井的柱狀巖性剖面圖。
油藏描述
油藏描述是一種新技術,它把地震、測井、地質等多方面資料綜合起來,運用計算機手段進行處理,定性、定量描述三維空間的油氣藏,包括:構造、儲層、儲集空間、流體性質及分布、滲流物理特征、壓力和溫度、驅動能量和驅動類型、油氣藏類型等,是對油氣藏本身正確的認識。
井壁取心
井壁取心是使用測井電纜將取心器下入井中,用炸藥將取心器打入井壁,取下小塊巖石以了解巖石及其中流體性質的方法。
油氣探井
為勘察地下含油氣情況所鉆的井稱油氣探井。探井一般有4大類。⑴參數井:了解一個地區(盆地或凹陷)生油巖和儲集巖存在和分布的情況的井;⑵預探井:了解一個圈閉中是否含有油氣和儲集巖分布情況的井;⑶評價井:在預探井發現含油氣儲集層后,為探明這個圈閉(油氣藏)含油氣面積和地質儲量所鉆的井;⑷資料井:為獲得油氣藏油層參數(主要是使用特殊工具在鉆進中取出整塊,進行檢測與分析)所鉆的井。
地質錄井
地質錄井是配合鉆井勘探油氣的一種重要手段,是隨著鉆井過程利用多種資料和參數觀察、檢測、判斷和分析地下巖石性質和含油氣情況的方法。主要包括巖屑錄井、巖心錄井、鉆時錄井、熒光錄井、鉆井液錄井及氣測錄井等。
可燃冰
可燃冰是天然氣水合物,其主要萬分是CH4·H2O。它的形成與海底石油、天然氣密切相關,是埋于海底地層的大量有機質分解形成石油和天然氣時,其中的許多天然氣被包進水分子中,在海底的低溫與壓力下形成一種類似冰的透明結晶。1立方米可燃冰釋放的能量約相當于164立方米的天然氣。目前國際上的公認全球可燃冰總量是所有煤、石油、天然氣總和的2-3倍。我國南海海底已發現可燃冰帶,估計能量總量相當于我國石油總量的一半。而對東海的調查也得出可燃冰蘊藏量可觀的結論。還為新世紀使用高效新能源開辟了廣闊的前景。